(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)

Rewrite Strategy: FULL

(1) CpxTrsToCpxRelTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to relative TRS where S is empty.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)

S is empty.
Rewrite Strategy: FULL

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
+/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(*(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)

S is empty.
Rewrite Strategy: FULL

(5) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
exp(x, s(y)) →+ *(x, exp(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [y / s(y)].
The result substitution is [ ].

(6) BOUNDS(n^1, INF)